Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia

Export citation

Many production landscapes are complex human-environment systems operating at various spatio-temporal scales and provide a variety of ecosystem goods and services (EGS) vital to human well-being. EGS change over space and time as a result of changing patterns of land use or changes in the composition and structure of different vegetation types. Spatio-temporal assessment of EGS can provide valuable information on the consequences of changing land use and land cover for EGS and helps to deal with this complexity. We carried out a quantitative and qualitative appraisal of selected EGS (timber production, carbon stock, provision of water, water regulation, biodiversity, and forage production) to understand how these have altered in a complex mosaic of landscape that has undergone significant change over the past 200 years.
Land use and land cover types and their associated EGS were assessed and mapped using a wide range of readily available data and tools. We also evaluated the trade-offs among services associated with observed land use change. In contrast to work elsewhere, we found the recent changes in land use and land cover have an overall positive impact on various EGS due mainly to the conversion of pasture to managed plantations which are connected to the larger areas of remnant vegetation. Results also indicate that there was a high level of variation in the distribution of the EGS across the landscape. Relatively intact native vegetation provides mainly regulating services whereas the modified landscapes provides provisioning services such as timber and forage production at the cost of regulating services. Rapidly changing demand and supply of certain goods and services (e.g., timber, pulp or carbon) may also have positive and negative impact on other services. For example, increasing plantation rotation has positive impacts for biodiversity and carbon stock but reduces stream flow and water yield.

Altmetric score:
Dimensions Citation Count:

Related publications

Get the CIFOR latest news