Agroforestry systems are complex assemblages of ecosystem components, each of which responds to climate. Whereas climate change impacts on crops grown in monocultures can reasonably well be projected with process-based crop models, robust models for complex agroforestry systems are not available. Yet impact projections are needed because of the long planning horizons required for adequate management of tree-based ecosystems. This article explores available options for projecting climate change impacts on agroforestry systems, including the development of process-based models, species distribution modeling, climate analogue analysis and field testing in climate analogue locations. Challenges and opportunities of each approach are discussed.

For all agricultural systems, appropriate adaptation to climate change requires an understanding of how well existing and potential future systems will perform in future climates. The development of tools and methods for reliable climate change impact projections on agricultural systems has therefore been a research priority for agricultural and climate modelers in recent years, and several robust crop models are now available for agricultural adaptation planning [3,4,5]. Most of these tool development efforts have focused on annual crops grown in monocultures [3,4], for which climate change impacts can therefore be projected quite reliably [6-8].

Agroforestry systems are more complex than monoculture situations. They consist of annual and perennial plants, which are often integrated with livestock. Temperature, humidity and ambient CO₂ concentration affect all organisms involved in an agroforestry system, possibly in very different ways, and climate change is projected to alter all of these factors. In light of the high potential of agroforestry for food security [9], climate change adaptation and mitigation, tree-based agricultural systems are currently being promoted in many parts of Africa [9], and they have successfully been established in many regions [10]. Many of the trees that are introduced are long-lived species that are expected to grow on farmers’ fields for several decades. These long planning horizons make consideration of climate change impacts on trees particularly important. After all, many trees planted today may still be in place by the middle or even end of the 21st century.

There is thus great need for methods to project climate change impacts on agroforestry systems. Three main approaches are available: (1) process-based models, (2) species distribution models and (3) climate analogue analysis (Figure 1). As part of a Special Issue of Current Opinion in Environmental Sustainability focusing on ‘Agroforestry, Climate Change and Food Security in Africa’, we summarize challenges and opportunities of each of these approaches for projecting climate change impacts on agroforestry (Figure 2).

Process-based models
Where all major processes of a particular system are reasonably well understood, process-based modeling approaches are feasible. System performance is then modeled as a response to factors such as soil, climate or management, which affect system processes, such as plant transpiration, nutrient uptake, photosynthesis, biomass accumulation or interspecific competition for resources.

Introduction
Climate change is projected to affect agricultural and natural ecosystems around the world, and there is no reason to expect that agroforestry systems will be spared. Like all other plants and animals, those existing within agroforestry systems will be exposed to temperatures that are higher than those of the past [1], to higher carbon dioxide concentrations, and they may also experience changes in precipitation [2]. These changes will probably affect all system components, and they may even modulate interactions between components.

Addresses
1 World Agroforestry Centre (ICRAF), Nairobi, Kenya
2 CSIRO Ecosystem Sciences, 203 Tor St, Toowoomba, Qld 4350, Australia
3 World Agroforestry Centre (ICRAF), Trav. Enéas Pinheiro s/n, Belém 66.095-100, Brazil

Corresponding author: Luedeling, Eike (e.luedeling@cgiar.org)
Process-based models simulate such biophysical processes in agricultural systems, often looking to project economic or environmental outcomes of land management choices. In recent years, process-based models have frequently been used to develop land use strategies that mitigate climate risk [11], for simulations of climate change impacts [12,13] and mitigation [6] and for evaluating agricultural policy scenarios [14]. Models are also commonly used for exploring adaptation options to climatic changes projected by global or regional circulation models [15]. Such analyses have been undertaken for sugarcane [12], broad acre agriculture [8,13] and small-holder crops [16]. None of the advanced modeling frameworks available currently are capable of simulating processes in agroforestry systems. Trees are typically not included in these models, and tree-crop interactions can generally not be simulated. An exception is the inclusion of Eucalyptus-crop interactions into the Agricultural Production Systems Simulator (APSIM; [17]). Yet some other models have tackled the complexity of agroforestry systems [5**,18–20]. Among these, the Water, Nutrient and Light Capture in Agroforestry Systems model (WaNuLCAS; [5**]) is capable of simulating tree–crop interactions in great detail. However, it does not operate at a daily (or even sub-daily) time step, so that the level of detail in simulating crop growth processes that is included in advanced crop models cannot be achieved.

Challenges and opportunities

The adequacy of existing agroforestry models for projecting climate change impacts is currently difficult to gauge. Unlike mainstream crop models, agroforestry models have only been used in a small number of climatic and environmental settings. They should therefore not be expected to contain accurate representations of the climate sensitivity of all system components. Much more validation and probably some improvements to the models are needed before climate change impact projections derived from them can be fully trusted.

Particular challenges to process-based modeling are:

- Processes in agroforestry systems are complex and many interactions are difficult to measure or model.
- The diversity of agroforestry systems makes it difficult to develop models that are valid in a wide range of climatic and environmental settings.
Advantages and challenges of climate change projection methods for agroforestry systems.

- Errors and uncertainties of all components are compounded in complex agroforestry models, so that extensive calibration and validation across climatic gradients is required.
- Experimentation and data needs for model development are very high, with controlled trials with mature trees constituting a particular challenge.

There is hope, however, for developing better agroforestry models. Modern crop modeling frameworks provide a means for integrating diverse models into one unified model (e.g. [21*]). This is an important prerequisite because of the range of system components that need to be simulated including trees, crops, soils, livestock and decisions by the farm manager. Models for each of these components need to be closely linked to allow simulation of the overall system. Developers of the next generation of agroforestry models can benefit from building upon existing, well-tested agricultural modeling frameworks, many components of which can be used directly or after slight modification. Yet integration of tree–crop interactions, such as competition for water and nutrients, as well as effects of tree canopies on crop microclimate, will still require some major additions to existing frameworks, and it seems unlikely that such components can become as robust as single-crop modules.

Species distribution modeling
Under the assumption that agricultural systems can be evaluated with methods typically used for studying organisms [22], species distribution modeling (SDM; [23**,24,25]) provides an alternative approach to projecting climate change impacts. It has been applied for modeling vegetation communities [26,27], agricultural systems [28,29**] and entire biomes [30].

SDM is based on a statistical method to determine the environmental niche of a species, system, biome or genotype, which then allows mapping the distribution both in environmental and (future) geographic space. Environmental variables used in SDM typically include available resources, limiting factors and disturbances [25,31]. These variables are usually combined with information on the point locations where a particular species is known to occur. SDM has recently become very powerful through introduction of machine-learning algorithms...
Predicting future trends for agricultural systems while considering complex and interlinked environmental and socio-economic factors is a complex challenge. Without modeling processes in detail, SDM can reproduce change patterns in an intuitive way. Given the limitations of the methodology, we expect that SDM can provide a conservative projection of the potential distribution of the ‘climatic niche’ of a particular agroforestry system, which could either be considered an ‘optimistic’ (e.g. ignoring future pests) or ‘pessimistic’ (e.g. ignoring adaptation strategies) view of the future distribution of systems.

Climate analogue analysis
Where knowledge about a system is insufficient for process-based modeling and information on the system’s distribution is insufficient for SDM, climate analogue analysis offers a last-resort alternative for projecting climate change impacts. For a given location of interest, this technique searches for different locations where the current climate is similar to that predicted for the site of interest [29**,44**,45]. Study of a site’s analogue locations provides a glimpse of the range of climatic futures that are projected. System performance at analogue locations can illustrate climate change impacts if similar land use exists, and different land uses may indicate useful adaptation options.

Climate analogue analysis has been used to illustrate climate change impacts by shifting the locations of US states and European cities on maps to their closest analogue sites [46,47]. Some studies have also used spatial statistics, such as the bearing and the geographic distance to the closest analogue site to express the magnitude of the adaptation challenge in quantitative terms [44**,48**]. Some researchers have argued that many locations do not have modern analogues of future projected climates [49]. For such locations, model-based simulations cannot easily be validated by experimentation. A current weakness of most analogue studies is that analogue searches are based purely on climatic data and geographic position, while very few have attempted to assess current land use or land cover at analogue locations. Exceptions include an assessment of current land cover for analogue locations to cities in Wisconsin based on a geospatial dataset [44**] and an evaluation of habitat suitability (modeled using SDM) for parkland agroforestry at three locations in the West African Sahel [29**]. Analogue analysis has also been proposed for identifying well adapted germplasm for temperate fruit trees [50], and experimental results from analogue locations have been used to project future performance of Pinus plantings in Brazil, Colombia and South Africa [51*]. Farmer visits to analogue locations have been facilitated to assist in sourcing land management options for adaptation to climate change [45].

Challenges and opportunities
Several challenges stand in the way of wider application of analogue analysis for projecting climate change impacts on agroforestry:

- While a range of methods has been proposed for analogue analysis [29**,44**,45,47,51*], all have shortcomings when it comes to quantifying climatic requirements of complex systems and their components. A number of technical issues, such as the most useful ways to normalize and weight different climate variables, have not sufficiently been addressed.
- Important non-climatic characteristics, such as soil type, farm size, market orientation or cultural preferences may differ between target and analogue sites such that sufficiently similar systems may not be present [52]. Information on these important characteristics for inclusion in analogue search procedures is often unavailable.
- Ensemble methods that evaluate multiple climate scenarios multiply the costs of analogue analysis, if actual observations at the analogue sites are conducted.
In contrast to process-based modeling and SDM, climate analogue analysis only provides information about particular sites, rather than allowing large-scale suitability or performance projections.

These constraints severely limit the range of circumstances, under which analogue analysis is likely to succeed. So far its only application for agroforestry systems has focused on a system that is used, with varying intensity, on a regional scale in the West African Sahel [29**]. It seems likely that applications for systems whose distribution is limited and that are dependent on very site-specific environmental and socioeconomic contexts will remain unsuccessful in the future.

Conclusions
As outlined by several other contributions to this special issue, agroforestry systems can potentially help farmers adapt to climate change while contributing to climate change mitigation through carbon sequestration [53]. However, introduction of agroforestry practices that are either entirely new, or new to particular regions, is risky, because like all other agricultural systems, agroforestry systems will respond to climate change. Many sources of uncertainty in projecting climate change impacts are not unique to agroforestry. Climate models and scenarios differ substantially in the extent of temperature and precipitation changes they project [2], impacts of pests and diseases on biological systems, especially for invasive species, can only crudely be projected (e.g. [54]), and there is substantial uncertainty about the direct impacts of elevated atmospheric carbon dioxide concentrations on plant physiology [30,55]. Species distribution modeling and climate analogue analysis can be used for impact projection, but both rely on the major assumption that observations of present performance or distribution can be used to guide estimates of future performance or distribution. Given that the effects of elevated carbon dioxide [30,55] cannot be observed at present, and many locations may experience novel climates in the future [49], both approaches have some systematic shortcomings that cannot easily be overcome.

The only approach that can comprehensively capture the effects of both CO2 and changing climates is the development of process-based models, supported by experimentation. Such models characterize the climate sensitivity of all system components and their interactions, and when this is done well enough, they should be able to project performance even in places or climates where the particular type of agroforestry system has never been observed. Efforts at developing such models have periodically been undertaken [5**,17**,18,19], but they have generally fallen short of producing robust models, whose projections of climate responses of trees and crops could be trusted. Indeed, capturing all relevant processes in sufficient detail to produce reliable results, while avoiding excessive complexity which may compromise a model’s usability, is a formidable task. Yet the promise of agroforestry for meeting the challenges of climate change, as well as recent moves to scale up tree-based agricultural practices throughout Africa and other parts of the world [9*], warrant a renewed effort at agroforestry modeling.

While process-based models emerge from our analysis as the most likely tools to produce robust and credible projections of climate change impacts on agroforestry systems, their development will require a substantial amount of time and energy, and the transferability of models across contexts is not guaranteed. SDMs and climate analogue analyses may be less reliable than process-based models, but their use is much cheaper, faster, easier and more flexible, so that they still constitute valuable tools for adaptation planning. The possibility to combine different projection approaches for planning adaptation to climate change, making use of the specific strengths of each method, deserves further exploration. For example, it may be possible to base SDM or analogue procedures on site characteristics obtained by process-based modeling of soil properties, market access etc. Species suitability scores could also be considered in analogue location searches. Such combined approaches may lead to more robust projections than application of each individual projection strategy.

Acknowledgements
We are grateful to the ‘Australian Centre for International Agricultural Research’ (ACIAR) for funding this work under the ‘Trees for Food Security’ project (grant FSC201202014). We also acknowledge support from The Rockefeller Foundation, as well as the CGIAR Research Programs on ‘Climate Change, Agriculture and Food Security’ (CCAFS), as well as ‘Forests, Trees and Agroforestry’ (FTA).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:
• of special interest
•• of outstanding interest

The WaNuCAS model has been used extensively in a variety of different agroforestry systems. The method used to abstract complex systems in
6 Sustainability challenges

both space and time has been used as a basis in other agroforestry models.

This study reviews several case studies, in which agroforestry practices are successfully being used at large scales to enhance food security in Africa.

The model developed in this paper demonstrates much of what can be achieved through the use of process-based modeling of agroforestry that includes equal emphasis on crop and tree components. The analysis provided estimates of production and environmental aspects over time, and simulation of woodlot design and management options allowed detailed economic analysis of options in what was a real farm situation.

Modern modeling frameworks have been designed not just to facilitate the construction of models, but also to allow the integration of different models. This is especially important when considering the development of agroforestry models where components will be required from very different problem domains. This particular framework has proven effective in this regard.

The authors provide an excellent overview of the ecological theory and limitations of species distribution modeling (SDM). The application of SDMs in climate change research is explicitly discussed.

This study uses both species distribution modeling and climate analogue analysis for projecting climate change impacts on parkland agroforestry in the Sahel. Habitat suitability is modeled with the Maximum entropy approach, and climate analogues are then used to interrogate the resulting suitability layers. To avoid spurious results, these evaluations were based on the 50 climatically closest analogues sites rather than a single point location, adding robustness to the analysis.

This study provides a comprehensive comparison of different species distribution modeling methods. The results clearly show that novel methods, such as boosted regression trees and maximum entropy, consistently outperform more ‘classical’ methods.

This study shows that consensus methods can provide more robust predictions than single-model predictions.

This is a comprehensive and well-documented evaluation of climate analogues for cities in Wisconsin, USA. The analysis includes evaluation of distance and bearing to analogue sites, as well as comparison of land use types at target and analogue sites.

Climate analogue analysis is used to quantify the climate change adaptation challenge. The greater the distance between target and analogue sites, the lower is the probability that species and ecosystems can migrate fast enough to keep up with climate change.

50. Luedeling E: Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 2012, 144:218-229.

51. Leibing C, Signer J, van Zonneveld M, Jarvis A, Dvorak W:

This study uses trial results from three countries in an analogue analysis framework to produce empirically derived estimates of the future performance of tree plantations. While trial sites were not strictly selected to be at analogue sites, this study is a rare case, where actual observations at analogue sites were used to make climate change impact projections.

