Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000-2005 in the tropics

Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000-2005 in the tropics

According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41-72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) roughly contributes with a quarter (~10-12 PgCO2e.yr-1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice and livestock. In spite of the importance of this sector, it is unclear where are the regions in the planet with AFOLU emissions hotspots, and how uncertain these emissions are. Here we present a novel spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°), for the tropics, for the period 2000-2005. Our data highlight: i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (75 %) and to their uncertainties (98 %), iii) higher gross fluxes from forests coincide with higher uncertainties, making agricultural hotspots more appealing for effective mitigation action, and iv) a lower contribution of non-CO2 agricultural emissions to the total gross budget (ca. 25 %) with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions 8.2 (5.5-12.2) were in the range of other databases 8.4 and 8.0 PgCO2e.yr-1 (FAOSTAT and EDGAR respectively), but we offer a spatially detailed benchmark for monitoring progress on reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties, will assist national policy makers, investors and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.

Authors: Román-Cuesta, R.M.; Rufino, M.C.; Herold, M.; Butterbach-Bahl, K.; Rosenstock, T.S.; Herrero, M.; Ogle, S.; Changsheng, Li; Poulter, B.; Verchot, L.V.; Martius, C.; Stuiver, J.; de Bruin, S.

Topic: mitigation, greenhouse gases, land use, emission

Publication Year: 2016

ISSN: 1726-4170

Source: Biogeosciences 13: 4253-4269

DOI: 10.5194/bg-13-4253-2016

Altmetric score:

Download Option:

Export Citation

Related viewing

Top